dation with 30 ml . of $3 N$ sodium hydroxide and 30 ml . of 30% hydrogen peroxide, there was isolated 9.62 g . (85% yield) of 2 -methylcyclohexanol, b.p. $165^{\circ}, n^{20} \mathrm{D} 1.4643,[\alpha]^{25} \mathrm{D}-0.5^{\circ}$. Analysis by gas chromatography (glycerol column at 75°) showed 92% cis-, 8% trans-2-methylcyclohexanol. Similar treatment of 10.0 g., 100 mmoles, of pinacolone yielded 8.6 g . (85%) of pinacolyl alcohol, b.p. $119-120^{\circ}, n^{20} \mathrm{D} 1.4154,[\alpha]^{20} \mathrm{D}+2.3^{\circ}$;
acid phthalate m.p. $85-86^{\circ},[\alpha]^{20}+18.9^{\circ}(c 3.65$ in CHCl_{3}). ${ }^{9}$
(9) R. H. Pickard and J. Kenyon, J. Chem. Soc., 105, 1120 (1914), reported b.p. $119-120^{\circ}, n^{22_{\mathrm{D}}} 1.4146,(\alpha]^{20_{\mathrm{D}}}+7.71^{\circ}$; acid phthalate m.p. $86-87^{\circ},[\alpha]_{\mathrm{D}}+63.9^{\circ}$ (in CHCl_{3}).

Richard B. Wetherill Laboratory
Purdue University
Herbert C. Brown
Lafayette, Indiana
D. B. Bigley

Received June 13, 1961

BOOK REVIEWS

Cholesterol. By David Kritchevsky, Associate Member, The Wistar Institute, Assistant Professor of Biochemistry in Medicine, The University of Pennsylvania. John Wiley and Sons, Inc., 440 Fourth Avenue, New York 16 , N. Y. $1958 . \mathrm{xi}+291 \mathrm{pp} .15 .5 \times 23.5 \mathrm{~cm}$. Price, $\$ 9.75$.
Dr. David Kritchevsky's book is a comprehensive review of the chemistry, biosynthesis, biological function and analysis of cholesterol. For the worker in the field it is both a synthesis and a work of reference. For the newcomer, whether he be a chemist or a biologist, it is a stimulating introduction to the knowledge of this important natural substance.

In Chapter 1, Chemistry of Cholesterol, a brief historical review leads to a well presented description of the proof of structure. The evolution and development of chemical reactions now standard and familiar in steroid chemistry are well presented as tools used in nuclear configuration analysis, total synthesis and in methods of preparing cholesterol labeled with the isotopes of hydrogen and carbon. The lability of radioactive cholesterol on storage is described. In Chapter 2, the Biosynthesis of Cholesterol is presented starting with the early balance studies which demonstrated 'in vivo' synthesis and dealing finally with the investigations of enzyme systems obtained from tissue homogenate fractions. The synthesis of cholesterol from acetate via squalene, the distribution of acetate carbons in the molecule, the effect of metal ions and dietary factors and the importance of the liver are discussed in an integrated fashion calculated to enhance further research.

Chapter 3 on Absorption and Transport of Cholesterol emphasizes the methods and pitfalls encountered in such studies. The roles of fat, bile acids and cholesterol esterase activity are discussed in relation to absorption of cholesterol into the lymph from the small intestine. The relation of lipoproteins to cholesterol transport in the blood is introduced to lay the foundation for the later discussion (Chapter 5) of their role in cholesterol metabolism in disease states.

Aspects of cholesterol metabolism in relation to body function are discussed in chapter 4 . These include its possible role in the transport of fatty acids, as a precursor of steroid hormones and bile acids, as a structural unit in nerve tissue and its antihemolytic properties in plasma. A brief but pertinent discussion on cholesterol balance studies is included. In Chapter 5, Cholesterol in Disease States, the relationship of cholesterol to cancer and to atherosclerosis are discussed in detail. As the layers of complexities are revealed it is obvious that the final answers to the unsolved problems of cancer and circulatory disease can come only through further patient research.
A worker in the field has only to read Chapter 6 on Blood Cholesterol to realize how well Dr. Kritchevsky has summarized and evaluated the pertinent points of the 546 references given at its end. The effects of various diets, of steroid and other hormones and other factors on the equilibria between cholesterol and its esters in blood and in tissues and on their distribution between blood and organs are discussed with special reference to disease states, particularly atherosclerosis. Hypocholesterolemic agents such as 2phenylbutyric acid, nicotinic acid and plant sterols are considered here.

The last chapter (7), Analysis of Cholesterol, reviews not only the standard and newer analytical methods but also the factors to be evaluated for a given application. The mechanism of sulfuric acid-induced color reactions is discussed. A worthwhile presentation of the merits of colunn11 and paper chromatographic methods for cholesterol and its derivatives is included.

An appendix contains physical constants of cholesterol, related sterols and derivatives as well as tables of the cholesterol contents of various foods and tissues. An amazing total of 2092 references covering the literature to 1908 has been used by Dr. Kritchevsky in the compilation of this book which can only be highly recommended.

Some errors, apparently printers', have been noticed. Wislicenus' name is spelled wrong on page 1 ; on page 11 the structural formula, XX1, for calciferol methyl ether has its C-4 labeled wrong and its double bond missing between C-5 and C-6; on page 40 a double bond should be present between C-5 and C-6 in formula CLX11.
Worcester Foundation for
Experimental Biology
Elijah B. Romanoff
Shrewsbury, Mass.

Comprehensive Analytical Chemistry. Volume IB. Classical Analysis. Edited by Cecil L. Wilson, PhiD., D.Sc., F.R.I.C., F.I.C.I., Professor of Analytical Cliemistry, The Queen's University of Belfast, and Davin W: Wilson, M.Sc., F.R.I.C., Principal Lecturer, Sir Jolin Cass College, London. D. Van Nostrand Company, Inc., 120 Alexander Street, Princeton, New Jersey. 1960 . xxii +878 pp. $16 \times 23 \mathrm{cin}$. Price, $\$ 30.00$.
"Comprehensive Analytical Chemistry", eventually will comprise five volumes, some volumes consisting of several parts. The aim of the editors as stated in the preface is "to provide a work which in many instances should be a self-sufficient reference work, but where this is not possible it should at least be a natural starting point for any analytical investigation." This book, which is the second part of Vol. I, "Classical Analysis,', deals with classical methods of inorganic titrimetric analysis (visual end-point detection) and with organic quantitative analysis. It is written by sixteen specialists, most of whom are fronn England.

Nearly 400 pages are devoted to inorganic titrimetric methods, of which a chapter "Theory and Practice"' by E. Bishop occupies 180 pages. This consists of a clear and somewhat detailed treatment of $p \mathrm{H}$ and similar calculations appropriate to titrimetric processes, and includes 33 pages of tables of equilibrium constants and electrode potentials. In general the treatment is excellent, aside from the curious statement (p : 11) re the effect of ionic strength on equilibrium calculations: "at the equivalence point of titrinnetric reactions the concentrations are usually of the order of $10^{-5} M$ or less, when the activities approach unity." A brief chapter on apparatus describes the common types of volumetric glassware and gives practical suggestions on its use. It is of interest to learn (p. 186) that specifications established for the manufacture of titrimetric glassware en-

